FACULTY OF SCIENCE
UNIVERSITY OF COPENHAGEN

B.Sc. Thesis

Casper Balslev Hansen

Real-time Fourier Analysis & Convolution

Supervisor: Jon Sporring

Januar 22, 2018

ii

Contents

1 Introduction
1.1 AnalogSignals.
1.2 Digital Signals
1.3 Audio Processing
2 Filtering Methods
21 IdealFilters
2.2 Fast Fourier Transform
2.3 Short-time Fourier Transform
2.4 Sliding Discrete Fourier Transform .
25 Convolution
3 Filter Design
3.1 Finite Impulse Response
3.2 Infinite Impulse Response
4 Analysis
4.1 PhaseDistortion.
42 Stability.,
5 Implementation
51 Algorithm
52 Filter
53 Interface
6 Testing
6.1 IntermalTests.
6.2 ExternalTests
7 Conclusion
Appendices

A Definitions

A.1 Linear Time Invariant (LTI) systems
A.2 Special functions

iii

iv

CONTENTS

Abstract

In this project I will present the theory of Fourier analysis in relation to audio signals. In
particular, the project will investigate the application of filtering under the constraints of
real-time signals.

With a practical example in mind (a guitar tuner), I will compare the most common
and competitive methods of filtering, and choose the most efficient for this application.
Furthermore, the design of such filters is covered in some detail, with emphasis on the
chosen method and filter type.

I will conclude theoretical content by analysing the resulting filters, showing that they
behave as expected, as well as provide some insight on how to decide if a filter is suitable
for a particular application.

Once the filters have been derived and shown to produce the desired results, I will
explain the algorithm of the tuner and how it was implemented, as well as the filtering.

Lastly, I will provide some internal tests, showing that the tuner works as expected
using a synthetised ideal signal. I will then test the system with real signals, external to the
system, showing the filters” hypothetical positive effect on the system.

Resumé

I dette projekt vil jeg preesentere teorien bag Fourier analyse i relation til lydsignaler. Seerligt
vil projektet undersoge anvendelsen af filtrering under de begreensninger der forekommer
ved signaler i sand tid.

Med et praktisk eksempel i sinde (en guitartuner), vil jeg sammenligne de mest almin-
delige og konkurrencedygtige metoder af filtrering, og veelge den mest effektive til denne
anvendelse. Ydermere er designprocessen af disse filtre forklaret tilnezermelsesvis detajleret,
hvor der leegges veegt pa den valgte metode og filter type.

Afslutningsvis for den teoretiske del, vil jeg udfere en analyse af de resulterende filtre,
der efterviser at de virker som forventet, samt give nogen indsigt om, hvordan man kan
afgere om et filter er egnet til en given anvendelse.

Efter filtrene er blevet udledt og vist til at producere de enskede resultater, vil jeg fork-
lare tuner algoritmen og hvordan den blev implementeret, sdvel som filtrene.

Til sidst vil jeg give nogle interne test, der viser at tuneren virker som forventet ved
brug af et syntetisk ideelt signal. Derpa vil jeg teste systemet med aegte signaler, eksterne
for systemet, der efterviser filtrenes hypotetiske positive effekt pa systemet.

CONTENTS

Introduction

Although the theory and techniques discussed may be applicable for any signal, albeit
adapted thereto, for our purposes we will constrain ourselves to audio signals. We begin
by examining what a signal is in this context.

1.1 Analog Signals

An analog audio signal is a variable electrical voltage obtained with a transducer'. A trans-
ducer produces a continuous function mapping its voltage x(¢) at time ¢, and has a voltage
ceiling k, at which point the signal gets distorted.

Definition 1.1.1 (Audio signal) Let k be a voltage ceiling of a transducer. Then the continuous
function x(t) : R — [—k, k] of time t describes an audio signal of a transducer with a ceiling of £k.

For the time being, we will be looking at audio signals of finite length.

1.1.1 Analyzing signals

Jean-Baptiste Joseph Fourier (1768-1830) devised harmonic analysis as part of his study of
thermodynamics. The theory states that any periodic function can be described as an infinite
sum of sinusoids.

Definition 1.1.2 (Periodic function) Let f be a function. If f(z) = f(z + T),Vx, then f is
periodic with period T'.

Theorem 1.1.1 (Fourier series) Let f be a periodic continuous function of time t, with period T,
then the infinite sum

o
; 2
z(t) = Z ape’™0ot where wy = % (1.1)

k=—00
describes f completely.

The Fourier series can be intuitively thought of as a synthesis of a signal z(t) from a set
of complex exponential coefficients aj, which modulate the sinusoids e**<°’.

Given that z(t) € R for the signals we intend to process, we have that Z(t) = z(t).
Taking the complex conjugate and reversing the sum by a change of sign, we see that

x(t) — Z akeikat E— %: Z ﬁef’ik(m)t: Z ﬂeikwot (1.2)

A device which converts one form of energy into another.

3

4 CHAPTER 1. INTRODUCTION

Therefore, if 2(¢) € R then a;, = @—. This observation allows us to save computational
time, because given either one, we can predict the other, which is taken advantage of in
the Fast Fourier Transform algorithm. Each a; defines the amplitude and phase of the kth
sinusoid e***0, which follows from the examining the exponential form, as follows

zkwot 10 zkwot

ape = |agle = |ay|e!hwot+0) (1.3)

Suppose we have such a periodic signal z(t). We can then use the Fourier series to
analyze the signal by extracting these complex coefficients. Let n be an integer, and multiply
both sides of the Fourier series by e ""“o! and integrate both sides from 0 to T’

:I? 7mw0t Z ake i(k—n)wot (14)
k=—
T T
/ F(t)e meotdqy = / > apettTmeoldy (1.5)
0 0 f=—oo
Z ak / ik—n)wot 7 (1.6)
k=—00
=Ta,, - eEmwt_ {1 h=mn (1.7)
0 k#n
I :
/ z(t)e "ol gt = q, (1.8)
T Jo

These complex exponential coefficients are called Fourier coefficients.

Theorem 1.1.2 (Fourier series expansion) Let x be a periodic continuous function (see defini-
tion 1.1.2, p. 3) of time t, with period T, then the integral

1 r —ikwot
ay = — x(t)e "0t (1.9)
T Jo

defines the complex Fourier coefficients ay, of f.

For electrical signals, ag is often referred to as the DC-offset, or DC term. If we plug in
k = 0 we see that e=%“0! = 1. Reducing the entire expression to a constant corresponding
to the average value of the entire signal, which can be thought of as an offset on the y-axis.

T T
ay = % /0 f(t)e Owotqy — % /0 f(t)dt (1.10)

Now, let’s consider a continuous function z(¢) of length T'. The function isn’t periodic,
however. For convenience, we assume the that z(¢) = 0, V¢ € [—00,0) U (T, 00].

Let Z(t) be a function which copies z(t) and repeats every T" units, such that z(t + kT) =
z(t), where ¢t € [0,7] and k € Z. Then Z(t) is a continuous periodic function which has a
Fourier series. By examining the Fourier coefficients, we see that substituting z(¢) with z(t)
doesn’t affect the integral, as they are equal in the interval [0, 7]. Subsequently, extending
the integral from —oo to oo doesn’t change the result, as z(t) is zero outside of [0, T').

4= & / " b(ye ihunigr = L / " (e hentgy = L /)kt gy (1.11)
SO T J, T/ . '
With the above in mind, let’s define X (w)
0
. 1
X(w) :/ z(t)e”*oldt suchthat a; = fX(kwo) (1.12)
—0

1.2. DIGITAL SIGNALS 5

Then, we can reconstruct the signal z(t) by

1 ’ 2
z(t) = Z TX(kwo)e’kwot, where wy = % (1.13)
k=—0o0
1 & :
= — [X(kwo)emot] wo (1.14)
2w Fanl

Intuitively, we can think of this as a sum of rectangles under the curve of the function
X (w)e™*, each of which is of width wq. If we let wg — 0, then T — oo, and the sum then
becomes an integral of w, and as the copies ‘move outward toward infinity’, we see that
z(t) — z(¢t). Thus,

z(t) = % /_OO X (w)e™dw (1.15)

Which is called the inverse Fourier transform.

Theorem 1.1.3 (Inverse Fourier transform) Let X (w) be a periodic continuous function of fre-
quency w, then

z(t) = ;ﬂ_/ X (w)e™dw (1.16)

The inverse of this was the defined as X (w), which is called the Fourier transform.

Theorem 1.1.4 (Fourier transform) Let x(t) be a non-periodic continuous function of time t, then

X(w) = /00 z(t)e it (1.17)

—oQ

In summary, if we have a periodic function, we can take the Fourier series, or the Fourier
transform, because as shown the Fourier series is merely a special case of the Fourier series.
If however, we have a non-periodic function, we can only take the Fourier transform. The
Fourier transform itself is a special case of the Laplace transform.

1.2 Digital Signals

In order to easily distinguish between continuous and discrete signals, we will employ a
notational convention using parenthesis z(¢) and brackets z[n], respectively, and also sub-
stitute the continuous variable time ¢ with a discrete integer number variable 7.

1.2.1 Sampling

To continuous signal z(t) into a discrete one we measure and sample the signal at, or over,
evenly-spaced intervals 7', called the sampling period. By sampling at intervals of 7" we get
a discrete signal z[n] which is sampled at 7. Hz, or samples per second, called the sampling
frequency. For mathematical convenience, we define w; = 2% as the sampling frequency,
which is measured in radians, as opposed to hertz.

Such a system is called a sampler, and the process is referred to as sampling, the most

simple of which is given by

z[n] = z(nT), where n is an integer and a sampling period of T'. (1.18)

6 CHAPTER 1. INTRODUCTION

Theorem 1.2.1 (The sampling theorem) Given a band-limited signal x[n] with a maximum fre-
quency wg, sampled at frequency ws. If ws > 2wp, then x(t) can be perfectly reconstructed.

In audio, a common sampling frequency w; is at 44.100 Hz. At this sample-rate the
signal is bandlimited by wp, which is called the Nyquist frequency. In this case wp = 22.050
Hz, which is just above the frequency range of human hearing.

Definition 1.2.1 (Nyquist frequency) Let w, be a sample-rate of some signal z[t]. The maximum

Ws

requency we can represent in a discrete-time system is then wg = “.
2

This property of discrete-time systems becomes evident, when we look at the discrete-
time Fourier transform (see section 1.2.2, p. 6). In particular, equation (1.21) makes this
clear. The sampling theorem then intuitively tells us that we must sample above twice the
desired maximum frequency of the signal in order to produce such a frequency.

1.2.2 Discrete-time analysis

In continuous-time, we had the forward and inverse Fourier transformation. In discrete-
time, we can adapt the continuous-time equations with a few minor adjustments.

In the case of the Fourier transform, we simply substitute the integral over the continu-
ous function f(z) with a sum over f[z], giving us the discrete-time fourier transform.

Theorem 1.2.2 (Discrete-time Fourier transform, DTFT) Let f[n] be a discrete non-periodic
function. Then

Flw)= > flnle ™" (1.19)

k=—00
is the discrete-time equivalent of the Fourier transform.

If we look at F'(w + 2m), we see that the discrete-time fourier transform is periodic, with
period 2.
Fw+2nm) = Z fln]e~iwt2mn — Z fn]e mne=i2mn — Z fln]e ™" = F(w) (1.20)
k=—o0 k=—o k=—o0

We also see the symmetric property F'(w) = F(—w), much like the coefficients of the
Fourier series.

Given that w is a frequency, this periodicity and symmetry tells us that such a signal is
band-limited by 7. We can verify this by producing the fastest oscillation possible

T

z[n] =e """ =cosmn +isintn = (—1)" (1.21)

Intuitively, we can picture this on the unit-circle in the complex plane as a signal which
oscillates between the extrema —1 and 1. If we plug in any w = (,27), we can use this
intuition to visualize that the wave appears to ‘move’ in the opposite direction.

As pointed out, F(w) is 27 periodic and symmetric. Therefore, we restrict the integral of
the inverse discrete-time Fourier transform to this interval. Otherwise the integral would
not converge.

Theorem 1.2.3 (Inverse discrete-time Fourier transform, IDTFT) Let F(w) be a function of
frequency w. Then

fln] ! /W F(w)e®dw (1.22)

2 J_,
defines the inverse discrete-time Fourier transform.

We see that the IDTFT is merely a Fourier series expansion of a signal with period 2.

1.2. DIGITAL SIGNALS 7

1.2.3 Discrete analysis

We would like to represent a digital signal as a sum of coefficients, as the Fourier series. To
do so, we recognize the that we will only require a fixed amount of sinusoids.

For convenience, we will define Wy = ei%ﬁ, which is called an Nth root of unity. Now,
consider a periodic discrete signal of length N. Then the nth sinousiod reduces to

o o . 11,27
elkﬁ("+N) _ eZkWneleW — eszn — Wﬁfn (1.23)

Which means there are only a finite number of complex exponentials. If we apply this to
the Fourier series, we get a sum from 0 to N — 1.

Theorem 1.2.4 (Discrete Fourier Transform, DFT)

N—-1 o N—-1
XK =Y anle *F" =" an]w (1.24)
n=0 n=0

We can interpret this as evaluating the discrete-time Fourier transform at n2T, effec-
tively sampling the continuous function X (w) at intervals of 22. Thus, a signal of length
N produces exactly N unique coefficients. We know from the Fourier series that these are
complex conjugates of each other, and therefore only allows us to express 4 real sinousoids.

An N-point DFT consists of N unique sinousoids, called frequency bins, each of which
are centered at frequencies k%3, for £ € [0, N — 1], and the kg bin is merely the average or
DC term. The range of the bins collect contributions of frequencies at either side of the bin’s
center, spanning the range <.

Correspondingly, we get the inverse discrete Fourier transform,

Theorem 1.2.5 (Inverse discrete Fourier transform, IDFT)

1 N—-1 . 1 N-1
afn) = & Y X[Ke™F" = =% XRWR! (1.25)
n=0 n=0

Notice the discrete Fourier transform allows us to express the coefficients by Nth roots
of unity, which is at the heart of the Fast Fourier Transform (see section 2.2, p. 10) algorithm.

1.2.4 Z-transform

As mentioned in passing the continuous-time Fourier transform is a special case of the
Laplace transform. While we won’t go into any depth about the Laplace transform itself,
we will discuss its discrete equivalent, and some intuition of this is therefore granted.

Definition 1.2.2 (Laplace Transform) Let x(t) be a complex signal where s € C, then
X(s) = / z(t)e Stdt (1.26)

defines the Laplace transform X (s) of z(t).

If we let s = iw, we get exactly the Fourier transform, which constrains the complex ex-
ponential in the Laplace transform to the unit circle in the complex plane. This key concept
carries over into the discrete version of the Laplace transform, called the Z-transform.

8 CHAPTER 1. INTRODUCTION

Definition 1.2.3 (Z-Transform) Let x[n] be a complex signal where z € C, then
X(z) = Z z[n]z™" (1.27)

defines the Z-transform X (z) of the signal x[n].

Similarly, if we let z = €™ we get exactly the DTFT. In other words if we constrain the
magnitude of z, such that |z| = 1, then this is in fact the discrete-time Fourier transform.

These equations allow us to move from the time-domain (functions of time) to the
frequency-domain (functions of frequency), in both the analog and digital realms.

1.3 Audio Processing

The term mixing is the process of balancing not only levels of each individual audio track,
but more importantly controlling dynamics of- and frequency distribution among tracks.

1.3.1 Spectral Processing

Each audio track has its own frequency char-
acteristics. By the additivity of the Fourier

uoIssNaad [BI0A

g ag?,ig:;,,fg,':gl ——————— transform, when we sum all of the signals,
LI i| izl — we sum the frequency content. The signals
: e compete for spectral room. Le the frequency
: — ﬂ content of a kick drum and bass guitar are

\"'*“""' concentrated at 30-400Hz. This is why we
¢ “'L'J mu\”‘ | ——— ‘clean up’, or filter, signals. We may also
"L o - “"‘ = ; — ——— want to emphasize certain frequencies of a

mh!mdﬁﬁ 5"ggmﬂ m“ signal, to make it stand out more in a mix.
IJ.II.I.I.II.I.II.I.I.II.I.II.H.II.III.H.II.HI.H.II.I.II.I.I.II.I.III.III.IIII.I.II.I.III.III.I.II.HI
o | I 3'; r“|"'a“‘ s:,“,‘! Al 1.3.2 Dynamics Processing

I varmti Honk

|
F

o Controlling the dynamics of a track has sev-

bt el $%| eral applications; evening out a signals that

—— have quiet and load parts (i.e. vocals), em-

phasis on transients (i.e. drums), enhance

Figure 1.1: Frequency ranges of instruments gy;gtain (i.e. guitar), etc. However, we will
(source: audio-issues.com) focus on spectral processing in this thesis.

1.3.3 Guitar tuner

For this project, [have chosen to implement a guitar tuner. I chose this for several reasons; 1)
I hypothesize applying filtering to reduce noise will improve the tuner’s ability to recognise
the principal frequency, 2) for any reasonable input there is an expected output, and 3) its
use is simple and easy to demonstrate.

A guitar tuner filters and analyzes an incoming signal, presumably a plugged guitar
string, and determines the principal frequency in that signal. It then converts this into the
corresponding musical note. If the guitar string is out of tune, it shows the deviation from
the nearest note, by indicating cents, which is a ratio between two musical note frequencies

— formally defined as ¢ = 1200 log2(§1). In simpler terms, it is merely a division into
hundredths of the interval between musical notes — i.e. adding a 100 cents to Eb yields E.

Because the theory is applicable for most of audio processing and analysis, I will present
it in its general form, as the incentive of filtering the signal in the tuner will be the same as
with any audio filtering; the reduction of noise and unwanted frequency content.

Filtering Methods

When we talk about processing, the signal is transformed by some mechanism or device,
which is referred to as a system. In example, a sampler, which we have talked about, is
a system. Here, we will talk about filters, which are also systems. The systems we will
discuss will be linear time invariant (see appendix A.1, p. 37). From here on out, unless
stated otherwise, when we refer to a system we will assume that it is LTT compliant.

A simple example of a filter system is the moving average (2.1) which averages the
signal for each n over IV units.

15

1

= z[n — k| (2.1)
k

y[n]

=15

2.1 Ideal Filters

As discussed (see section 1.3, p. 8), we are interested in filtering audio signals, so as to make
room in the frequency spectrum for other signals, reduce noise or similar. In our case, we
wish to remove any frequency content that doesn’t constitute the range of the tuner.

The most important filters in this context are the low-pass (LP) and high-pass (HP) filters,
which removes frequencies above or below, respectively, a so-called cut-off frequency w.
The preserved frequency range is called the pass band, while the frequency range being
filtered out is called the stop band. The frequency range between the pass- and stop bands
is called the transition band. I1deally, we would like the low- and high-pass filters to have as
narrow a transition band as possible, as shown below.

1 iff w < |we| 0 iff. w < |wel
Hlp(w) - {0 otherwise @2) th(w) - {1 otherwise 23)
o s
= =
7‘r —We We ™ ™ —We We ™
Frequency (w) Frequency (w)
Figure 2.1: Ideal low-pass filter Figure 2.2: Ideal high-pass filter

The filters shown above have a so-called brick-wall transition band because of the dis-
continuity at w., and this is the desired effect in the frequency domain. Let’s examine the
time domain of the low-pass filter. For convenience, let the height of the pass band be ,

We T (e’th — e_WCt) sin wt

1 o . 1 .
hip () = 3 / Hip(w)e™ dw = 5 / me“tdw = o = — (2.4)
—00 —We

10 CHAPTER 2. FILTERING METHODS

Notice we can write hyp, (t) = wc%, which is a sinc-function w, sinc w.t, making the fil-

ter exhibit an undesirable property; it is non-causal. Meaning it depends on future samples.

Theorem 2.1.1 (Causality) Let H(x) be an LTI system, such that y[n] = H(z[n]). If y[to], for
any to doesn’t depend on x[t1], where t; > to, then the system H(x) is causal.

Now that we know how ideal filters behave in either domain, we may examine tech-
niques for achieving the desired effect, and circumventing the undesirable ones.

2.2 Fast Fourier Transform

The easiest way of manipulating the frequency content of a signal is to treat it directly in
the frequency-domain. In this case we use the Fast Fourier Transform (FFT) algorithm. While
the algorithm itself is out of the scope of the thesis, we will briefly go over a few key ideas
and properties. We will be looking at the Radix-2 FFT.

221 Complexity analysis

The regular DFT can be reduced to 2N? operations in R, giving the O(N?) running-time
complexity, which is not a desirable in a real-time context.

The FFT is a divide-and-conquer approach by asserting that the length of z[n] is a power
of two, or simply zero-pad z[n] if not, such that the N = 2 criterion is met, and then splits
even and odd sums of the DFT, called decimation in time. To do so, we define n = 2r,

N-1 . N-1
X[k =) znle *F" =" aln]Wy (2.5)

n=0 n=0
N/2—1 N/2—1

= 3w w4+ Y a2+ gwg V" (2.6)
r=0 r=0
N/2-1 N/2-1

= > 2] W) F+WE Y a2r + W) (2.7)
r=0 r=0

At this point, we recognize that we can leverage the periodicity of the complex exponential
by substituting W3 = Wi /2, allowing us to rewrite both sums such that they resemble
DFT’s of length %

N/2-1 N/2-1
= D 2 2WE, A WR D a2+ W, (2.8)
r=0 r=0

We end up with two DFT’s of length %, where one is multiplied by a so-called twiddle
factor, the sum of which yields the length N DFT. By repeating this procedure, we get a
recursive algorithm that produces 4 base case DFT’s of length 2, which reduces to a simple
addition and subtraction since W5 = —1 and W, = 1.

Thus, the algorithm is a recursive tree-structure with a height of O(lg N) divide step.
Each level of which has a linear conquer step O(N). Giving the general complexity O(N Ig N).

2.2. FAST FOURIER TRANSFORM 11

2.2.2 Circular convolution

The relationship between time- and frequency domain operations is given by the convolu-
tion theorem.

Theorem 2.2.1 (Convolution theorem) Let z(t) and y(t) functions of time t, and let X (w) and
Y (w) be their respective Fourier transforms. Then

FHXW)Y (W)} = @@@y)(t) and F{lz@y)(t)} =X ()Y (v) (2.9)

That is, multiplication in either domain is equivalent of circular convolution (2.10) in the
other, and vice versa. While this property is probably the most important of all, allowing us
to perform the same filter in either domain, in order to use it effectively, we must circumvent
the circularity, which causes aliasing.

hlo] hln—1] ... k2] B[] [0] y[0]
(1] y[i]
h[1] h[0] h[2] :
. — (2.10)
hln — 2] - o h[0] hRln—1]| [zm -2 ylm — 2]
hin—1] hln—2 ... hA] A0] | lam—=1]] |ylm—1]

One solution is to recognise the length of the output of such a convolution in the time-
domain. The length of the output of a signal and kernel of lengths m and n is m +n — 1.
If we zero-pad such that N > m + n — 1 of the FFT, then we have eliminated the aliasing
issue. However, we have implicitly multiplied by a rectangular window, which as shown
(2.4) corresponds to a sinc in the other domain — this is known as spectral leakage.

| 1x : e . . B 1
2 S A AN A =Rl
g ; T"TTETEY = il
A ; Nl et A A 4 <EE 1 1] i . .
< 20 40 60 80 100 120 500 1000 1500 2000
Samples Samples
[@
far] far]
Saot | S 20 ke
«© 8 L . ; s ’ © A Nsas . .
= 9 10 20 30 40 50 60 = g 200 400 600 800 1000
Frequency (Bin) Frequency (Bin)
0 50 Al Wi
@ -100 £\ b o Ty TN H ‘ \f “V\“'\".’\". VYV
e / \ 4 e f
2000 e N e s sof C L1 LTI
N I
Frequency (Hz) Frequency (Hz)
Figure 2.3: Non-padded cosine at 2kHz Figure 2.4: Zero-padded 2kHz cosine

As evident from the above figures, the single cosine leaks out into surrounding fre-
quency bins. The padding applied above is exaggerated to show how the leakage spreads.

There are other reasons why zero-padding is needed in real-time applications. Particu-
larly, in audio processing where we have to deliver an output with minimal latency, with no
discernable delay. As such, each frame segment, discussed in the following section is usu-
ally very small — 4096 samples or less. But reducing IV reduces the frequency resolution,
therefore we zero-pad the signal in order to artificially produce a finer resolution.

2.2.3 Advantages 2.24 Disadvantages
1. Easy to manipulate frequencies 1. Circular convolution in time

2. Highly optimized algorithms 2. Spectral leakage

12 CHAPTER 2. FILTERING METHODS

2.3 Short-time Fourier Transform

Knowing a signal in its entirety allows us to describe it completely as a sum of sinusoids. In
a real-time setting, however, we only know a small part of the signal at any given moment.

B Tim¢ (n)

Figure 2.5: Signal, current (red), previous (dark grey), and future samples (light grey).

Each chunk is, as with zero-padding, im- g
plicitly multiplied by a rectangular window. £ E'o il
We may account for this by adopting another £ ! - e e b
window, which minimises the effect of spec- . Samples
tral leakage, i.e. the Hanning window R
1 27 gloL /\ ‘ ‘ : ‘
w(r) =< |1—cos 2.11 2 0 200 400 600 800 1000
() 2 < (N - 1)) () Frequency (Bin)
: : 50
and adapting our algorithm to accomodate g S e ™

the change, by employing the Short-time
Fourier Transform (STFT). It takes the DFT of
a windowed frame centered at the time mR,

Xm(w) = Z z[n]wln — mRle “" (2.12)

where R is the so-called hop size.

%,
% [
%

74

N
o
Frequency (Hz)

Figure 2.6: Zero-padded 2kHz cosine multi-
plied by Hanning window

Rather than moving ahead by the size of the frame, for consecutive frames, it moves
ahead by R, and if
o0

Z w[n — mR] = ¢,¥n € Z, where c¢ is some constant.

m=—0oo

(2.13)

which is called the constant overlap-add property, then the sum of each intermediate DFT
taken at intervals of R is equivalent to that of the entire DFT.

Z X(w) = Z Z z[n]w[n — mR]e™*" (2.14)
= Z x[n]e”m Z win —mR] =c¢ Z z[n]e”m (2.15)

If we chose a window function where ¢ = 1, we get exactly the regular DFT.

2.3.1 Advantages

1. Minimises spectral leakage
2. Effective reuse of twiddle factors

3. Circumvents circular convolution

2.3.2 Disadvantages

1. Recalculates each intermediate DFT
2. Each window is an O(N)-operation

3. High latency of at least N

2.4. SLIDING DISCRETE FOURIER TRANSFORM 13

2.4 Sliding Discrete Fourier Transform

The Sliding DFT[4] employs a more data-efficient approach by reusing the DFT bins of a
frame for time ¢ to calculate the bins of the following DFT at time ¢ + 1.
The DFT at time ¢ is calculated as follows.

Xy(n) =Y aft + KWy (2.16)

In a real-time context, we may assume that the initial frame is simply zeros, alleviating
the need for an initial DFT. Sliding the window ahead from time ¢ to ¢ + 1, we can then
produce the DFT at time ¢ + 1 from the previous DFT.

N-1 N-1
Xy41(n) et +k+ Wt = S aft + kw " (2.17)
k=0 k=1
N—-1
(wak Wk — f(¢) +f(t+N)> Wy (2.18)
k=0
= (Xe(n) — f(O) + f(t+ N)) Wy (2.19)

What happens when calculating the DFT at ¢+1 is a phase shift in the frequency domain,
corresponding to the shift in the time domain. Effectively ‘undoing’ the impulse of the
sample at ¢, and adding the impulse of the sample at ¢ + V.

2.4.1 Advantages 2.4.2 Disadvantages
1. Highly memory-efficient 1. Moving by N samples requires O(N?)

2.5 Convolution

If a system adheres to the properties of LTI, we can analyse its behaviour by putting an
impulse (see definition A.2.1, p. 38) through it.

Let’s suppose we have a system 7(x), then h[n] = 7(d[n]) defines the impulse response of
the filter. By linearity we have (2.21), and by time invariance we have (2.22).

yln] =1(zn]) =1 (Z d[n — k]x[k]) (2.20)

k=—o0
= > 7(0[n — k) [k] (2.21)
k=—o0
= Z hn — k]z[n] (2.22)
k=—o0

The latter of which is the discrete-time convolution of an arbitrary signal z[n| by the
impulse response h[n]. Thus, if we know the impulse response h[n], we can produce y[n]
entirely by the time-domain convolution of z[n] with h[n].

Definition 2.5.1 (Discrete Convolution)

o

(@xy)n] = D wlklyln — k] (2.23)

k=—o0

14 CHAPTER 2. FILTERING METHODS

A problem becomes apparent in convolving ideal filters then; the impulse response ex-
tends out to infinity, making it impossible to realise in the time-domain.

In relation to convolution, if we don’t “flip” the kernel and conjugate the signal z[n], we
get the correlation of the signals z[n| and y[n], at some lag .

Definition 2.5.2 (Discrete Correlation) Let z(t) and y(t) be discrete functions of time n, then

o0

rall] = Y Enlyln +1] (2.24)

n=—00
is the cross-correlation of signal x with y at lag [.

If the z[n] € R, then Z[n] = z[n], as it is in our case, since we are dealing with real-
valued signals. Further, if z[n] = y[n], this is known as auto-correlation. The latter form of
correlation is useful in determining periodicity within signals, which we will use it for later.

Correlation asserts that the signals don’t deviate radically from each other. We can nor-
malise the correlation formula to mend this.

Definition 2.5.3 (Normalised Correlation) Let z[n| and y[n| be a discrete functions of time n,
then

o _ Tayll]
Fyall] = N (2.25)

defines the normalised correlation of signals x and y at lag [.

This produces a more reliable correlation in the range [—1; 1], regardless of deviation.

2,51 Complexity analysis

Given a signal z[n] of length N and kernel h[n] of length M. For each N entries in z[n| we
have M constant time operations, amounting to N M operations. In the worst case we have
N = M, giving us a running-time complexity of O(N?).

However, in real-time, the kernel size M is usually very small. Further, the size of each
frame is a common variable. Thus, the size M will determine whether convolution gives a
lower running-time.

Let’s fix N and examine at which M the N | 256 | 512 | 1024 | 2048 | 4096
running-times intersect. We have NM = M| 8 9 10 11 12
NlgN = M = IgN, giving us the table
in figure 2.7, to the right.

Figure 2.7: Theoretical FFT and convolution
running-time intersections

2.5.2 Advantages 2.5.3 Disadvantages
1. Worst case almost never realised 1. Filter design much more complicated
2. Doesn'’t suffer spectral leakage 2. Must be designed with very low M

3. Minimal overhead and latency

Filter Design

Now that we have discussed the various strategies of filtering, let’s explore if we can design
filters in the time-domain using convolution of adequate quality, while also keeping the size
of such filtes low enough to compete with the FFT strategies.

3.1 Finite Impulse Response

Consider a running average filter. If we put an impulse through the filter, we get what is
called a finite impulse response (FIR) filter. We obtain the generalized form of FIR filters by
letting the averaging coefficient ; be a sequence of coefficients by.

M
yln] = bpwln — k] (3.1)
k=0

Let’s try to model an FIR approximation of Ay, of length N, where NV is odd for conve-
nience. We know from (2.4) that fp(t) = hip(—t), so we let h[n] = h[-n] and M = ¥51,in
which case we can simplify the filter by its symmetry

M . M A M .
H(w) = Z hln)e™""™ = h[0] + Z hinle "™ + Z h[—n]e™" (3.2)
n=—M n=1 n=1
M M
= h[0] + Z hln](coswn — isinwn) + Z h[—n](cos wn + i sinwn) (3.3)
n:;/[n=1
= h[0] + 2 Z hln] coswn (3.4)

n=1

This gives a finite length symmetric filter. Notice that the imaginary terms cancel. The
filter violates the condition of causality, however. We can mend this by applying a delay of
M units, giving us h[n — M], which can be expressed as an equivalent filter, symmetric at
M and h[n] = h[N — n — 1]. Rearranging the sum to accomodate the change, we get

M-1
H(w) = (M) (h[M] + > 2h[n] cos(w(M — n))> (3.5)

n=0

Equivalently, for a filter with an even length N, we have that
. M
H(w) = e“M) Z 2h[n] cos(w(M — n)) (3.6)
n=0

Let A(w) = |H(w)| in the above, and consider the convolution of X (w) for some signal
z[n] with the above filter H (w).

X (@) H (w) = |X ()| H (w) | = X ()| Afw)e! X7 (3.7)

15

16 CHAPTER 3. FILTER DESIGN

Notice that the phase response / H (w) is a linear function —wM, called linear phase. This is
a consequence of the cancellation of i sin-terms when a filter is symmetric, as derived above.
It is a desirable effect because each frequency is shifted by a constant amount, which merely
a delay in time, and not considered a distortion of the input signal.

Any symmetric and anti-symmetric FIR filter is always a linear phase filter. Below is a list
of all four linear phase filter types, which phase and amplitude functions.

[Type [N [Symmetry | 6 | Aw) |
I Odd Symmetric —Mw h[M]+2 ZHM:_OI h[n] cos((M — n)w)
II Even Symmetric —Mw 2 Zano hln]cos((M — n)w)
Il | Odd | Anti-symmetric | 7/2 — Mw 23 P hin] sin((M — n)w)
IV | Even | Anti-symmetric | 7/2 — Mw 2 27]\1/[:0 hln]sin((M — n)w)

Figure 3.1: Types of linear phase FIR filters

FIR filters have many other applications in audio as well. Impulse responses can be
sampled from reverberation, guitar cabinets, etc., to emulate rooms or pieces of gear.

3.1.1 Frequency sampling method

Given that we can express any of the aforementioned filters entirely by A(w), we can sample
N evenly spaced frequencies, which corresponds to the DFT coefficients, and take the IDFT
to obtain the time-domain equivalent Ay, [z].

Let’s assume a type I linear phase FIR filter of length NV = 63 and a cut-off frequency
we = 82F. The phase is then —~Mw = — (¥31)w = —31w and the set of sampled DFT

2
coefficients of Aj,(w), sampled at 27 is denoted as A;,. If we plug in, we have the following

N-1 N-1
1 27 1 _ 2T
hip[n] = N E Hlp(w)e’kN” =~ E Appn]e M@t n (3.8)
n=0 n=0

Which, by calculation, results in the corresponding [n] filter, shown below.

Time (n)

Frequency (w)

Figure 3.2: Example ir.npulse response of Figure 3.3: Example magnitude response of
type I linear phase FIR filter type I linear phase FIR filter

The delay in time is quite obvious from figure 3.2. Notice the resemblence with w, sinc wt
derived earlier. The corresponding magnitude response |H (w)| is shown in figure 3.3.

While the method requires little effort to produce a filter, there is a significant error
around w,. This ringing effect is known as the Gibbs phenomenon, and no matter how large
we make N, the error is proven to remain at around 9% of the discontinuity[1].

3.1.2 Advantages 3.1.3 Disadvantages
1. Minimal phase distortion 1. Delay is proportional with quality
2. Always stabile (see section 3.2.2, p. 17) 2. Error at the cut-off frequency

3.2. INFINITE IMPULSE RESPONSE 17

3.2 Infinite Impulse Response

As we increase the quality of FIR filters, they get larger in size and introduce delays, result-
ing in latency. And, as explained, we want to keep the filter size small enough to compete
with FFT. If we introduce feedback into the system, we get an infinite impulse response.

N M
D apyln— k=) bpxn — k] (3.9)
k=0 k=0
M N
aoyln] =Y braln — K] =Y aryln — k] (3.10)
k=0 k=1

The difference equation (3.9) introduces the feedback, and by isolating y[n], we get the
general form of an IIR filter (3.10). Usually we normalise the coefficients such that ag = 1.

3.2.1 Transfer function

Applying the Z-transform to the difference equation (3.9) gives us

N M ZM bkz_k
Y(2)) arz ™t =X(2)Y bz F = Y(2) = X() S (3.11)
k=0 k=0 2 k=0 W7~
which by the convolution theorem implies that
M —k M —k
H(z) = 2b=07 " Moy (3.12)

CSemr ™ 1+ aph

Note that if a;, = 0, Vk # 0, then it’s an FIR filter, giving us the Z-transform of FIR filters.
M

H(z)=> bpz" (3.13)
k=0

3.2.2 Region of convergence

As alluded to, the Fourier transform is related to the Z-transform by the magnitude of z.
Let’s be explicit about the magnitude, and substitute z with its polar form in the Z-
transform.

X(z)=X(re™) = > (a[n]r ™e ™" (3.14)

n=—0o0

Let Z[n] = z[n]r~" be a signal, then the discrete-time Fourier transform of Z[n] is exactly
the Z-transform of z[n]. Or, vice versa, let r = 1, then the Z-transform is merely the DTFT.

The significance of » becomes apparent when we consider that the Z-transform conver-
gences if Y >0 |z[n]r ™| < oo, and if this convergence is true for r = 1, then so does the
DTFT. The Z-transform may converge in places where the DTFT does not, and by analysing
the range of r in this convergence, we can determine if the DTFT convergences as well. If
the DTFT converges at every point in the unit circle of the complex plane, we say that the

system is stabile, meaning a that is filter doesn’t blow up and produce oco-values.

Definition 3.2.1 (Stability) Let h[n| be an LTI-compliant system. If the Z-transform of h[n] con-
verges for r = 1, then the region of convergence includes the unit circle and the DTFT exists, and
the system is considered stabile.

18 CHAPTER 3. FILTER DESIGN

3.2.3 Poles and zeros

Observing that z[n]z=" = z[n](2~")" makes it clear that X (z) is a complex polynomial, and
can usually be expressed as a rational function.

When this is true, as previously shown (3.12) to be the case for FIR and IIR filters, we
have a transfer function of form H(z) = ggi;, by which we can easily identify what is

known as the poles (3.15) and zeros (3.16) of H(z), as shown below.

D(z)=0 = X(z) =00 (3.15)
0 (3.16)

Knowing the poles and zeros, we can write H (z) in pole/zero form.

Definition 3.2.2 (Transfer function pole/zero form) Let ¢; the be poles and d; the be zeros of
some transfer function H(z). Assuming by # 0, then

M M —1
H(Z) — gHZ:l(Z CZ) — gHZ:l(CZZ), hereg — bO (317)
ag

HZJL(Z —d;) Hi]\;(l —diz™1)

is the pole/zero form of the transfer function. The factor g is called the ‘gain factor’.

The poles and zeros of the Z-transform allows us to analyse the behaviour of a filter
in the frequency-domain by expressing the magnitude response |H (¢*')| by the pole/zero
form of a transfer function

Hij\il‘l — cie | _ Hij\il‘eiw — ¢

Hz]'\;ﬂl —dje | Hfiﬁew — dj|

|H(e™)| =g (3.18)

In doing so, we get a ratio between the distance from each of the zeros and poles to a
point on e*. Intuitively, the closer zeros are to some point on ¢, the less the magnitude
response becomes. Conversely, the closer poles are to some point on e, the stronger the
magnitude response becomes. The above (3.18) also makes it quite easy to see that, if a zero
and a pole are equal to each other, they simply cancel out each other, and that there are M
and N potential poles and zeros, respectively. Thus, order corresponds to poles and zeros.

3.2.4 Bilinear transformation

The most common, tried and trusted way of designing IIR filters is to design it as an analog
filter, and then convert it into a digital approximation. The analog design process has been
around for much longer than the digital, and closed-form solutions exists for well-known
filter types. Analog filters are designed and expressed in the Laplace domain.

The bilinear transform is a mapping H(s) — H(z), which we get by expressing z in
terms of s, and apply Euler’s formulae to reduce the expression.

g fT7 14sT)2
z=e€" = ~

1 . . .
T2 S 1= sT/2 = s= In z, where 7' is the sampling period (3.19)

The In z term can be approximated using either Taylor- or Laurent series,

z—1 1/z—-1\" 1/z-1\" z—1

= = | =2 3.20
z+1+3(z+1> +5(z+1> * <z+1) (3:20)
which gives us the bilinear transform, named after its two linear functions in the numerator
and denominator.

Inz =2

3.2. INFINITE IMPULSE RESPONSE 19

Definition 3.2.3 (Bilinear transform)

2 (z2-1 2 (1—271 1+ sT/2
= = — d 1 — 21
5<_T(z+1> T<1+zl) , and conversely Z<_1—8T/2 (3.21)

The above substitutes s in an analog filter, and effectively maps the complex s-plane of
the Laplace transformation to the z-plane of the Z-transformation.

Recall that z = re™, and we may write s = o + i€). If we substitute into the formula and
rearrange, we have that

2re™ —1 2 r?—1 2r sin(w)
= —— ==) 3.22
ot Trew +1 T(1+7"2—|—2rcos(w)+Z1+r2+2rcos(w) (322)
2 -1 2 2r si
r Jand Q= = rsin(w) (3.23)

7= T 1+ 12 + 2r cos(w) T1+ 1724 2rcos(w)

It then follows that when r = 1, then o = 0. Therefore, the bilinear transform maps the
i€d-axis to the unit circle of the z-plane. Furthermore, if 7 > 1 then 0 > 0. Therefore
the right-hand side of the s-plane is mapped outside the unit circle of the z-plane — the
unstable region. Conversely, the stable region inside the unit circle 0 < r < 1, corresponds
to the left-hand side of the s-plane.

Frequency warping

The distinction between analog 2 (radians per second) and digital w (radians per sample)
frequencies becomes apparent if we let r = 1 and hence o = 0, and isolate either one,

2451 B 2451 B) eiw -1 9 eiw/Qeiw/Q _ eiw/Qefiw/Q

P T T Al T T4l Tew 1 T ew/2ewf2 y w22 (3.24)
9 eW/2 (/2 _ o—iw/2 9 Ww/2 _ o—iw/2 9 2i(iw/2 _ o—iw/2
_ 2R e) 2ett — e 2 5(e) (55)
T ezw/2(ezw/2 + e—zw/2) T eiw/2 | g—iw/2 T %(ezw/2 + 6—10.1/2)
2 2isin(%) 2sin(¥) 2 w
— Q=i ST e Do 2l D () 3.26
T 2cos(y) Tecos(y) T M\ (3:26)
And conversely, isolating w, we have that w = 2tan™! (21).
The non-linear relationship between T A
continuous-time frequencies and discrete- |
time frequencies is quite evident — this is Qr

called frequency warping.
As a consequence, the range [—m;7]

in w —where we define discrete-time -
frequencies— the function is injective, elim-
inating frequency aliasing, which occur in Figure 3.4: Frequency warping

other methods, like impulse invariance.

Analog filters are usually designed from a low-pass model, and always with a normalised
critical frequency Q@ = 1[3], which is later scaled in accordance with the specification. The so-
called prototype filter is then transformed by frequency transformation to give other filter types,
such that the high-pass filter. If we choose §2 accordingly, then T' can be determined

1= —tan (%) = % = cot <%) (3.27)

Substituting into (3.21), we get the normalised bilinear transform.

20 CHAPTER 3. FILTER DESIGN

Definition 3.2.4 (Normalised bilinear transform)

1 1-—2z1
tan (%) 14271

R (3.28)

We can substitute directly, and reduce the expression to match the Z-transfer function
(3.12), or we can derive some substitution rules, making it easier to convert.
First, we recognise these identities[5],

tan (%) - % (3.29)
(tan <%>)2 - ;EZZ‘: (3.30)

and for each order of s (up to s? is sufficient for our purposes), we substitute and reduce;

l+coswl+2z71 4272
l+coswl+2z71 4 272

1+ cosw 1— 22
1
< 3.32
y sinw 142z 1422 ()

1+coswl—2z1 422
2
. 3.33
5 1—coswl+2z 1422 ()

1=25"«

(3.31)

Factoring out Hl?jf%, we get
142271 + 272
o rt2z 27 (3.34)
1+ cosw
1— -2
s —2 (3.35)
SN w
1—-2 -1 —2
I s (3.36)
1 —cosw
Further, multiplying by (sinw)?, we can remove the fractions
L+ (14221 +2) (1 - cosw) (3.37)
s (1 —27?)sinw (3.38)
s% 4 (1 =227+ 273)(1 + cosw) (3.39)

Giving us an easy set of substitution rules for the bilinear transform.

3.2.5 Biquadratic IIR

Designing analog filters is a huge subject, and far beyond our scope. Butterworth filters are
characterized by their flat passband, in contrast to Chebyshev and Elliptic filters. Which is
why I chose this particular model.

I give the simplest normalised 2nd. order (Butterworth) low-pass model.

1

H(s) = 55—
(s) 2+g+1

(3.40)

where the quality factor () is the ratio between the energy loss in the transition band and the
resonance in the near w.
A Q of % is called the half-power point, as the energy loss at the cut-off frequency is

20 log (%) , which corresponds to half a drop in power 10 log (%)

3.2. INFINITE IMPULSE RESPONSE 21

Applying the bilinear transform by the substitutions (3.37), (3.38) and (3.39) to the filter
(3.40), and reduce the expression to match the Z-transform transfer function (3.12), we get

_ (1+2z71+ *2)(1—cosw)
H(z) = (1—2z T +2 2)(1+cosw)+ (-2 ?)sinwg + (1 +22 L +2 2)(1 — cosw) (3.41)
_ (1= cos(®))/2) + (Leos(w))z* + ((1 — cos(w))/2) (342)

(1+sin(w)/2Q) — 2cos(w)z=t + (1 — sin(w)/2Q)z*2

the digital equivalent, where the coefficients are expressed as formulae dependent on the
quality factor @ and normalised discrete frequency w = w.Z" 2t where w, is in Hz. In this
case an IIR filter with two quadratic equations in its dlfference equation, aptly called a
biquadratic filter — often abbreviated biquad. We need only set the desired w and @. The
same procedure can be repeated for any analog filter, yielding its digital equivalent.

We only need low- and high-pass filters, to remove frequencies outside the range of the
tuner (see section 5.1.5, p. 28). The 2nd. order Butterworth analog high-pass filter is given

by H(s) = #, and their resulting responses are shown as part of the figure 3.8 and 3.9

in the following section.

3.2.6 Cascaded filters

For @ > —= 73 We getaresonance peak in the passband. If we wish to increase the slope in the
transition band without affecting the passband, we could devise a higher order filter, but as
order increases, so does the complexity of the design, and higher order filters are much more
likely to become unstable due to numerical precision as poles get closer together. Instead,
we apply filters in cascade, producing a higher order, while maintaining the stability.

Consider the poles in the s-domain as vectors. As previously shown (see section 3.2.3, p.
18), an Nth order filter produce IV poles. Like the Z-domain, these are mirrored conjugates
over the o-axis. Unlike the Z-domain, however, the magnitude of the pole vector is the
frequency and the angle corresponds to the . If we want to apply filters in cascade and
maintain the @), each pole must be adjusted accordingly.

iQ

iQ

Q

1/v/2=0.7071

0.5,1.0

0.5412, 1.3067

0.5,0.6180, 1.6180

0.5176, 0.7071, 1.9319

0.5, 0.5550, 0.8019, 2.2470

RO\ x| W3

0.5098, 0.6013, 0.9, 2.5629

Figure 3.7: Table of (approxi-
Figure 3.5: Poles in the s- Figure 3.6: Poles in the s- mate) @ for nth order Butter-
plane of a 2nd order biquad plane of a 4th order biquad worth filters (stage ordered)

An nth order filter will have an angle 7 between each pole. This gives us the formula
for the @ for a given pole angle 6; 1/2 cos(#). And, trivially the magnitude of the vectors, or
frequency, stay the same. Since these are normalised, they are of unit length, as explained.

Choosing the half-power point (), where Butterworth filters are maximally flat, we get
the angle 7, or 7 between the poles of a biquad. A 2-staged biquad gives an angle of g, etc.

Note that we can have odd order filters, as suggested in the table above. This is merely
a matter of adding a one-pole filter, and adjusting the) angles of the biquads accordingly.

22 CHAPTER 3. FILTER DESIGN

(dB) i (dB)

2nd order 0 2nd order [~
4th order 4th order
8th order 10 8th order
16th order 16th order
24th order |_| 5 24th order

-30

-40

Magnitude (dB)
v L g

&
Magnitude (dB)

-50

-60

\
/

-80 \ -80

0 0.01 0.02 0.03 0.04 0.05 0.06 0 1 2 3 4 5
Normalized Frequency (x rad/sample) Normalized Frequency (< rad/sample) 10

Figure 3.8: Magnitude response of cascaded Figure 3.9: Magnitude response of cascaded
low-pass biquads with cut-off at 440 Hz hp-pass biquads with cut-off at 40 Hz

As evident from figure 3.8 and 3.9, cascaded filters drastically increase the slope in the
transition band, without affecting the pass band. Furthermore, the magnitude responses
clearly show the half-power attenuation at the cut-off frequency, no matter the filter order.

3.2.7 Advantages 3.2.8 Disadvantages
1. Low delay penalty and efficient 1. Non-linear phase
2. Steeper attenuation slopes 2. Can be unstable

3. Can applied in cascade 3. Difficult to design

Analysis

4.1 Phase Distortion

It is evident from figures 4.1 and 4.2, contrary to the FIR filters discussed, the IIR filters’
phase response is not linear. As previously shown (see section 3.1, p. 15), linear phase is a
direct consequence of the symmetry or anti-symmetry of the impulse response. Therefore,
IIR filters can never achieve this property by definition. This non-linearity is constitutes
distortion of the signal.

Phase Response Phase

0
2nd order \
4th order [0

5 8th order |

16th order
24th order

2nd order
Athorder [
8th order

16th order
24th order

Phase (radians)
Phase (radians)
]

-20

-25

-30

0 0.01 0.02 0.03 0.04 0.05 0.06 0 1 2 3 4 5
Normalized Frequency (x rad/sample) Normalized Frequency (x rad/sample) 10

Figure 4.1: Phase response of cascaded low- Figure 4.2: Phase response of cascaded high-
pass biquads with cut-off at 440 Hz pass biquads with cut-off at 40 Hz

While non-linear phase response indicates distortion, it does so in terms of radians
added to each sinusiodal component of the signal. It is much more intuitive to analyse
the severity of it in terms of samples, or delay, shown in figure 4.3 and 4.4.

Definition 4.1.1 (Phase delay) Let 6(w) be a phase response, then
Plw) = ———= (4.1)

defines the delay of each sinusoidal component.

Phase Delay x10* Phase Delay

f 2nd order
B 4th order
8th order

16th order
24th order

2nd order
4th order
8th order
16th order
24th order

/\

50_/\

0 0.01 0.02 0.03 0.04 0.05 0.06 0 1 2 3 4 5
Normalized Frequency (x« rad/sample) Normalized Frequency (x = rad/sample) %107

)
8
3

™
&
5

N
S
8

Phase Delay (samples)
&
g
Phase Delay (samples)
6 & 4 & & A b H L o

Figure 4.3: Phase delay of cascaded low-pass,sFigure 4.4: Phase delay of cascaded high-
biquads with cut-off at 440 Hz pass biquads with cut-off at 40 Hz

24 CHAPTER 4. ANALYSIS

Further, if we take the derivative of the phase response, we can graph the rate of change
in phase, called group delay, shown in figure 4.5 and 4.6.

Definition 4.1.2 (Group delay) Let 6(w) be a phase response, then

D(w) = —%G(w) (4.2)

defines the rate of change in phase.

Group delay Group delay

600

2nd order

2nd order 6000
- 4th order 4th order
\ 8th order 8th order

e 16th OFder 5000 e 16th OFder
24th order 24th order

4000

3 3000

2000

IS
=]
3

@
8
3

N
S
8

Group delay (in samples)
Group delay (in samples)

o
8

1000

°
o

0 0.01 0.02 0.03 0.04 0.05 0.06 0 1 2 3 4 5
Normalized Frequency (x = rad/sample) Normalized Frequency (x = rad/sample) <107

Figure 4.5: Group delay of cascaded low- Figure 4.6: Group delay of cascaded high-
pass biquads with cut-off at 440 Hz pass biquads with cut-off at 40 Hz

Depending on the severity and application, we may want to reconsider the choice of
filter. In our case, the effect isn’t meant to be audible. Any delay in phase is therefore not
of significant importance. If we were filtering audio for anything audible, we may want to
either revise the filter, or compensate for the distortion in some way.

4.2 Stability

Plotting the poles and zeros (figure 4.7) of the filters allows us to examine the behavior of
the filter. Crucially, we can visually inspect the stability of the filter. Recall, that stability in
the Z-domain is dependent on poles being inside the unit circle.

Pole/Zero Plot x10°% Pole/Zero Plot

0.08

2nd order zero) 61
2nd order pole
4th order zero X :
4th order pole X 7 ar 4th order pole X
0.04 8th order zero : 8th order zero

8th order pole : 8th order pole X

2nd order zero
2nd order pole b
4th order zero

0.06

XOXO
XOXO

o
=
5

X

n

Imaginary Part
o
Imaginary Part
o

&
8
X
o

ol
o
R
x

H 4h X
-0.06 x v
: &l

-0.08

082 084 086 088 0.9 092 094 096 098 1 1.02 0.984 0986 0.988 0.99 0.992 0994 0.99% 0.998 1
Real Part Real Part

Figure 4.7: Pole-zero diagrams (zoomed) of low- (left) and highpass (right) filters

We can make use of the intuition given (see section 3.2.3, p. 18) to verify that they are
indeed performing the desired filtering. The low-pass filter has all its zeros placed at —1,
making the frequency response attenuate as we approach the maximum frequency. And
the poles located around 1 amplifies the frequency response at low frequencies.

Similarly, the high-pass filter has all its poles in the low frequency range, to pull up the
response immediately following the zero at 1 that attentuates the minimum frequency.

In both cases all poles are contained within the boundaries of the unit circle, and there-
fore both filters are by definition (see definition 3.2.1, p. 17) stabile.

Implementation

As a concrete example application of the techniques discussed, with simplicity in mind, I
have chosen to implement a tuner. It relies on a single input, making it easy to demon-
strate. Any frequencies outside the detection range of the tuner will be considered noise,
and should be filtered out of the signal. Therefore, the tuner will employ a low-pass filter
to limit the range and remove noise, and a high-pass filter to remove DC-offset.

While, as pointed out, FFT is an ideal

(]
-
: . £ %
choice for frequency spectrum analysis, I .o
-0.2 . . . L . .
found that the FFT approach would nothelp = 1 > 3 4 5 6
in identifying the fundamental frequency of e ., me 10t
a guitar string — even for filtered signals. 2 M] ‘ﬁk\ A /_s"‘._\, ——— A —A———]
8 0 e \f v 1\& T WP \w\",.'/ b (N’ \Wﬂ ‘Iﬁﬁ{"”v” B
. . . T o0 il i) | !) L 1
As evident from figure 5.1, plugging an 0 100 200 300 400 500 600 700

Eb string, which has a fundamental fre- Brerplency (2

quency of 77,87 Hz, reveals overtones at

multiples thereof. The overtones are seem- Figure 5.1: FFT of Eb string. Fundamental
ingly more powerful, making it difficult to frequency (blue arrow), and overtones (red
determine the fundamental frequency. arrows).

Recognising that the signal of a musical instrument is mostly periodic, aside from the
transient, I reckon that a correlation (see definition 2.5.3, p. 14) might provide a more reli-
able musical tone detection algorithm. That is, we want to determine the lag [at which the
normalised auto-correlation is maximal. Once found, the fundamental frequency f can be
calculated by f = “*, where w; is the sample rate.

I choose to view the signal starting at lag ! as a different signal y. We then seek to
maximise the normalised cross-correlation of z and y;

. _ Tayll]
ol el >0

As [grows large, so do the operations needed to perform the correlation. Finding can-
didates for / in advance allows us to minimise the number of correlations. By the definition
of periodicity z[no] = z[ng + [], therefore the algorithm uses peak-detection to provide can-
didates for /, since such a peak must exist at z[ng] and z[ng + []. The first peak detected at
ng is considered the reference signal, and following peaks are considered candidates for /.

5.1 Algorithm

The algorithm maintains a fixed-sized circular buffer A of n samples and two lists P and
R of reference points into the buffer. The circular buffer is simply an array and an index,
indicating the head and tail of the buffer.

A reference point is a data structure which holds information about its index into A
and its sample value. It also contains yy and xy which holds running correlations of 4, as

25

26 CHAPTER 5. IMPLEMENTATION

well as nc which is the normalised correlation. The x and y naming refers to references, or
indices into A — y being the reference point itself, while x is the reference of the least index
in the list, or zero-lag reference, corresponding to the first element of the list, as they are
added sequentially.

Reference points are found by keeping track of the highest positive DC-offset, or peak
value, and a reference to the peak is added to P when the signal crosses the DC line. This is
referred to as the peak-detection step. Its purpose is to find candidate offsets into A that are
likely to produce high correlations.

5.1.1 Peak-detection Example

A visual illustration of a simple case where n = 8 is given to make it easier to understand
how references are found and added to the P list.

The initial condition of each pass is that the buffer index (indicated by brackets) is 0. The
buffer A always contain the samples of the previous frame, and is zeroed out on the first
pass. Likewise the list P (elements indicated by 1) is empty. The current tracked highest
DC-value, or peak candidate, is shown in red.

Given the sequence {0.1,0.6, —0.2,0.3,0.4, —0.4, 0.5, —0.3}, we get the following,

1 T T T T 1 1 T T T T 1 1 T T T T I 1 T T T T I
0P © © ¢ © @ o o 0 T e o © o o o 0 T ¢ ® ® 0 o0 0 T ‘ * e o o o

S I B B | S O B B | S T T B B | S T I B B |
[011 2 3 45 6 7 012 3 456 7 0 % 213 4 5 6 7 0 % 2314 5 6 7

1 T T T T 1 1 T T T T 1 1 T T T T I 1 T T T T I
0 [N T . ? T e o ¢ 0 [B T . ? T L P) 0 [B T . ? T L T 'y 0 [N T ‘ ? T L T 1'

S I S B | B I S B | S T I S | S T I S |
01 2 345 6 7 01 2 3 4[516 7 01 2 3 4 5767 01 2 3 45 61[7]

T T T T T T T T

This concludes the first pass, as index modulus the length n becomes 0, resetting index
and meeting the initial condition of each pass. The buffer A is now full and P contains
references to all peaks in the current frame. The lists are then swapped, such that R = P,
and P is emptied to meet the initial condition of each pass.

5.1.2 Correlation Example

Now, the references in R (elements indicated by x) represent lag candidates, that are likely
to produce high correlations. On following pass, the first candidate, as explained, is used
as the zero-lag reference and subsequent candidates are correlated with this, producing the
xy correlation. Further, all references are correlated with themselves, giving the yy to later
produce a normalised correlation nc. The former two correlations are shown underneath
the corresponding x in order (xy on top and yy at the bottom). Note that correlations happen
before adding the new sample to the buffer, making it possible to read and correlate the
current frame whilst writing the subsequent frame, even when correlating at index 0. So,
given the subsequent sequence {0.4,0.3, —0.2,0.4, —0.3,0.5,0.7, —0.4}, we get the following.

e e B e e e 171717717 T
oIl 0t t] ot 0t] SRR
3 3 .
: : ... (ommitted) ... 4
S R S B | S N I S BB S T T I S R
[o11 2 3 4 5 6 7 012 3 4567 01 2 3 4 5 6171
0.*36 0.*24 0.%0 * 0.*32 0.%6 Tl.%l T0.*56 T
0-36 0.16 0.25 929 0-32 0.34 1.31 111 A
1.13

X IO WN -

5.1. ALGORITHM 27

List R now contains correlations for each candidate reference point. Upon entering a
new pass, before swapping the lists, we normalise the correlations, determine the maximum
(excluding the zero-lag reference) — the result is the algorithm’s best periodic match.

Let # and y denote the signal starting at the first reference and any of candidate ref-
erence, respectively. And let 7, denote the normalised correlation of r,,. Following the
examples above, we have that

0.56 1.17
e 047 Py = —— '~ 0.96 5.2
LT /131 L1 T /131 113 (5-2)

In this case, 7y is a pretty good match. The frequency is then chosen for this pass. The
correlation is used to weight the frequency’s influence on the tuner’s output frequency to
reduce erroneous detections, described later (see section 5.1.4, p. 28).

5.1.3 Pseudo code

Any reference-detection, such as zero-crossings, would work. I found that the greatest peak
between zero-crossings produced few and reliable reference points — the emphasis here is
on few, as each reference results in O(n) operations, that is, O(|R|n) operations per pass.

In the pseudo-code, I have taken the liberty of simplifying for readability which do not
alter the running-time. For instance, the pseudo code assumes that there are always valid
peaks in P, and no weighting is applied. I have also set an upper limit on | P| in the actual
implementation.

wvhile (true) {
input = getNextSample ()
if (index == 0) {
match = 0
z = R.pop() // pop first reference
for i, r in R {
r.nc = r.xy / sqrt(z.yy * r.yy) // normalised
if (r.nc > R[match]l.nc) match = i // find match
}

f = sr / (R[match].index - z.index) // calculate frequency

// swap reference lists
R =P
P = []

}

// correlate

x = A[L(R[0].index + index) % NI

for r in R {
y = A[(r.index + index) % NI
r.yy =y *y // zero-lag correlation
T.Xxy = x * 3 // lag correlation

}

// peak detection
if (input > threshold && input > peak.value)
peak = Peak(index=index, value=input)
else if (peak.index >= 0 && input < 0.0 && last > 0.0) {
P.append (peak)
peak.index = -1 // invalidate the peak

}

Alindex] = input
index = (index + 1) /% N

28 CHAPTER 5. IMPLEMENTATION

5.1.4 Error correction

Initial tests of the technique in Matlab using a single pass on finite-length signals yielded
perfect frequency detection, every time. In the real-time implementation, I found it may
erroneously detect frequencies at half of the actual frequency sometimes, even when re-
quiring correlation-values be above a certain threshold ¢. I suspect the reason is that both
correlations will be very close, as both should in theory match very well. This isn’t a prob-
lem from a usage perspective, as half or double the frequency is merely an octave, and
hence still the same tone — unless it is a design requirement to display the octave as well.
However, the cent meter would jump sporadically between frequencies far apart, and this
is a critical component that most be stabile.

To mend erroneous detections, in addition to averaging frequencies over time, smoothen-
ing the transitions, I created a weighting function w(z) (see figure 5.2), based on nothing
else than pure experimentation, that simply remaps correlations in [¢; 1] to an exponential
function clamped to [0; 1], diminishing the effect of less certain correlations. The averaging
mechanism gives us a unit of measurement; we will define a confidence variable ¢ € [0; 1]
as the sum of the weights over the length of the weight vector.

The function w(x) is also weighted by the deviation d from the current frequency, mak-
ing it harder for the tuner to let go of its current conviction.

Leta = l%q and b = a — 1, then the weighting function is given by

w(z, d) = del(ax=)=1)v2 (5.3)

The deviance d is calculated from the current wy and the newly detected w frequency by
an interpolation of three functions, which are parameterised by a strength variable s.
= %, then the deviance function (see figure 5.3) is

interpolated based on the confidence ¢, at threshold ¢, as such

sa) I=g)e S rea-ay) fosest (5.4)
BT (-) a0+ (i) et iteces |

Note that deviance is asymmetrical as it’s a ratio of frequencies. This limits the deviance
function, and gives some minimal chance for all frequencies to get through.

Let the frequency ratio be A,,

Deviance
o o

. . — e—— e f I . . n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 i 15 2
Correlation Frequency Ratio

Figure 5.2: Exponential remapping weight- Figure 5.3: Deviance function with s = 8 and
ing function w(q, d) — assuming d = 1 t= % (values used in implementation)

5.1.5 Parameters

The algorithm’s frequency range is obviously bounded by length of the buffer A and the
sample rate. We must choosen > [:J"; |, where w,,, is the lowest frequency we wish to detect.
In the case of a guitar, we want to be able to detect frequencies in the range [82.41; 329.63],
corresponding to the low E; (82.41 Hz) and high E; (329.63 Hz) strings, for a standard
tuning (E2 A2 D3 G3 B3 E4). However, it’s quite common to down-tune, so we might want
to leave a bit of room for lower range tunings — I've chosen the interval [40; 440] Hz.

Furthermore, it will only analyse the incoming signal if its dB-level is above a listening
threshold of -60dB.

X ION U WN -

o e e
OV = WDN PP OV

B W =

5.2. FILTER 29

5.2 Filter

The filters employed are biquads, which are quite easy to implement. The implementation
utilitizes a class that calculates the coefficients based on enumerations of a filter type as
well as the cut-off frequency parameter, and as an added feature it allows for higher order
cascade application by specifying the order. As we’ve seen, biquads are merely a specific
case of (3.12), where M = N = 2. Let S be the number of stages, and let B and A be arrays
of length L, containing the biquad coefficients of each corresponding stage. The biquad
filtering is then implemented according to direct-form I, shown in figure 5.4.

for x in samples { While the running-time of the filter is linear,
for s in [0:5-1] { we can further minimise the number of oper-
b = Blsl, a = Als] ations. If we normalise the coefficients by aq
xs = XS[s], ys = YS[s] . L.
at the time we calculate the coefficients, we

N = b[0] * x can remove a division by a¢ for each sample.
+ b[1] * xs[0]
+ b[2] * xs[1]

D = a[1] =* ys[0] yin]
+ al2] * ys[1]

y = (N - D) / al0]

xs[1] = xs[0]; xs[0] = x;

ys[1]1 = ys[0]; ys[0]l = y;

x = ys[0];

b Figure 5.4: Flow graph of direct-form I

(source: Wikipedia)

5.2.1 DC Removal

As the tuner relies on microphone input, it is important to ensure that we mend any DC-
offset. Low-quality, broken or damaged microphones may have such an offset.

The DC-blocking filter may be imple- : SRS 15}
mented in many ways, and I have chosen the P =
simplest; a bilinear filter of a single constant
R. T won't derive the formula as this filter
is simpler than the biquads, and can even be
applied using the same implementation —
in that case by = ay = 0.

The actual implementation is much sim-
pler; the coefficients are b = {1,—1} and

Magnitude (dB)

R=0.5
R=0.6
R=0.8
R=0.9
= R=0.995

3 4 5 6

a = {1 — R}, and is implemented as follows; Frequency (kH2)

0 = x0 - x1 1 %R
11 - zo; ey Figure 5.5: DC-Blocking filter magnitude re-
yi = yo; sponses (R = 0,995 used in implementation)

return yo0;

In our case, since the lower frequency range is quite low, it can be argued that we don’t
need a full-fledged high-pass biquad filter, and that the DC-filter would suffice. The only
considerable noise occurs above the range, while only the DC-offset is of significant concern
in this particular case.

The DC-blocker has a zero at 1 and a pole at R. So long as R < 1 the filter is stabile.

30 CHAPTER 5. IMPLEMENTATION

5.3 Interface

The interface of a tuner is quite simple. There are 2 primary indicators; 1) the note regis-
tered, if any, and 2) number of cents we’re off from the correct tone. In my implementation
the note registered is shown at the center, and around it are two concentric circles; the cent
meter at the outer rim with an indicator moving around this rim, and a combined level- and
tuning indicator. The latter is gray whenever input does not exceed the listening threshold,
and the tuner is therefore not listening. If it is listening it is showing how well the current
frequency matches the musical tone detected, and is red if the cent meter is at 50 and
green if the cent meter is at 0 — any value in-between shows an interpolated color thereof.

Figure 5.6: Screenshot of tuner (in tune) Figure 5.7: Screenshot of tuner (out of tune)

Additionally, the interface I have implemented shows the frequency registered of the
current input in the upper left-hand corner, as well as the confidence in the upper right-
hand corner.

5.3.1 Demonstration

Since the tuner is platform-dependent and the use of it requires a guitar, I have provided
a demonstration of the tuner in the form of a video. The video is available on YouTube
through this URL http://www.casperbhansen.dk/tuner-test/

Testing

A tuner is by nature a listening device. Testing it is therefore predominantly oriented
around external tests. Before doing so, however, I will show that the internal mechanics
work as expected by producing input with an expected result internally.

6.1 Internal Tests

6.1.1 Unit Testing

Creating optimal conditions for a tuner to provide tests is difficult using a a microphone
or even direct line input, which it is intended to use. Instead, I have written some simple
signal generators, whose output can be fed directly to the tuner, and as such provide the
conditions necessary for unit testing the tuner.

As a tuner doesn’t produce a definite Hz ay N L] NN
output, but rather a variable state, I have 20 Hz 0,0% 0,0% 0,0% 0,0%
trained each test with a time limit and 25 Hz 1,9% 14,8% 0,0% 0,0%
constramed €ach test with a tine amit an 30 Hz 38,6% | 460% | 00% | 290%
a confidence margin the test must fulfil in 40 Hz 616% | 528% | 541% | 524%
order to be considered succesful; Each test 60 Hz 5L6% | 516% | 5L7% | 517%
h th ht thin 19 80 Hz 63,9% | 51,7% | 921% | 51,6%

must reach the sought frequency within 1% 120 Hz 51,6% 91,0% 51,7% 51,7%
error and a confidence in this frequency of 150 Hz 951% | 517% | 5L7% | 51,7%
0 o 200 Hz 93,7% | 923% | 525% | 5.7%

at'le:flst 50%, and both criteria must be met 0T, ST B L %
within 2 seconds. 320 Hz 51,7% | 91,1% | 517% | 514%
With pure primitive waveforms, as fig- 380 Hz 517% | 816% | 779% | 517%
6.1h the t . fro- 400 Hz 749% | 517% | 517% | 91,1%
ure 6.1 shows, the tuner recognises every fre 0T 5240% | 517% | 5% | 1%
quency in the tuners range as expected, and 460 Hz 67,4% 52,3% 51,7% 72,7%
even some outside as well — which is good. L_480Hz 707% | 720% | 688% | 663%
. L D Avg. Conf. || 6632% | 6824% | 60,16% | 59,99%

Th.e'purpose of tbe filters 1sn't to resfcrlct its Avg, Pot | 9971% | 99.56% | 9951% | 9951%
ability to recognise frequencies outside the [Avg Time || 0,87sec. | 0,92sec. | 0,90 sec. | 0,89 sec.

its range, but rather reduce noise.

In summary, for expected outcomes, it
took an average of 0.89 seconds to reach the
conditions, with an average percentage of
the targeted frequency of 99,8% and an av-
erage confidence of 62,9%.

Figure 6.1: Primitive unit testing results
(Unit: confidence, data source: tests.cpp)

31

32

6.1.2 Filtering

CHAPTER 6. TESTING

Finally, in order to show that the filters do in fact alter signals as expected, I have recorded
some audio and applied the biquad filters of different orders, and taken the FFT of the

resulting signal.

The implementation does not make use
of the high-pass filter, since the DC filter was
favorable to it, as pointed out. In figure 6.2
we see the DC filter flattening the magnitude
response at the very lowest frequencies, as
expected. The figure further shows that the
low-pass filter does indeed dampen the fre-
quencies above the cut-off frequency.

A 2nd order biquad low-pass was suf-
ficient to produce good results, but in the
implementation, by pure experimentation, I
ended up using an 8th order cascaded bi-
quad, since it produced more satisfactory re-
sults. Any order above this did not produce
any significant change in the results.

Original Spectrum

Magnitude (dB)

0 0.5 1 1.5 2 25
Frequency (Hz) x10°

Original Spectrum (Zoomed at DC)

o T T T T
2
5 V\/WV‘/\/\'VWWWWW\WWWVVMV\/VVWWWW\M
320
=
=
jo)
©
S o I . I . .
0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)
. DC Filtered
m 40 T T T
ok
)
2201 AN AR A
(=
o
T
S 0
0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)
. 2th order Filtered Spectrum
o 4 T . .
8 8|
3%
E -20
40
= -60
Frequency (Hz) «10%
= 4th order Filtered Spectrum
% 60 T T T T T
o 40
20
3%
‘e -20
2 -40
< -60 : 5 . . 1
0 1 2 3 4 5 6 7 8
Frequency (Hz) x10*
. 8th order Filtered Spectrum
% 60 T T T T T
g%
g 3]
e
S 60t . .
0 1 2 3

4 5 6 Z 8
Frequency (Hz) w104

Figure 6.2: FFTs of DC- and biquad filtered
signals with cut-off at 440 Hz

6.2. EXTERNAL TESTS 33

6.2 External Tests

As the system is a reference system, testing it requires definite knowledge of the principal
frequency of the input to provide a baseline measurement. I employed a tone generator as
reference source for testing on real input with a known frequency. Once a baseline has been
established, it is critical to test the tuner with the input it is intended for, a guitar, and in
various environments that may affect the tuners ability to give a stabile reading.

6.2.1 Experimental Set-up

All baseline measurements were conducted in a vocal booth (see figure 6.5, p. 33) in my
own home studio. The room is built with sound proofing materials which minimises out-
side noise, and has been treated acoustically to minimise resonance. The measurements
were recorded when the tuner reached a resting state, with minimal fluctuation. The ex-
periment was done using a tone generator (Tone Gen Pro, for iOS) producing the primitive
waveforms; sine, triangle, square and saw. Once established that the tuner works in a con-
trolled environment, I will move the system out of the confines of a low-noise environment
and try to break it by imposing noise on the source of the signal.

6.2.2 Baseline Measurements

Here, I give the results of the measurements taken in the controlled acoustic environment.
In order to fulfill the specification satisfactory, the tuner is required to 1) respond with

minimal error using the tone generator within the frequency range [40; 440] Hz, 2) achieve a

stabile resting state for all open guitar tones in a standard tuning within less than 1 second.

Hz N 1 NN Tone || Expected Result
20 Hz N/A N/A N/A Es 82,41 Hz | 82,4 (99%)
25Hz || 250 (32%) | 250 (48%) | 25,0 (30%) 5
30Hz || 30,0 (89%) | 30,0 (58%) | 30,0 (62%) Ag 110,0 Hz | 110,0 (99%)
40Hz || 40,0(98%) | 40,0(91%) | 40,0 (92%) Ds 146,83 Hz | 147,1 (95%)
80 Hz 80,0 (97%) 80,1 (95%) 80,0 (99%) G 196.0 Hz 196 .0 (960/0)
110Hz || 110,2 (76%) | 110.0 (99%) | 110,0 (98%) 3 4 4 -
220 Hz || 220,5 (70%) | 220.5 (80%) | 220,5 (74%) Bz || 246,94 Hz | 246,8 (88%)
440 Hz || 441,0 (75%) | 441,0 (85%) | 441,0 (85%) E, 329,63 Hz | 330,2 (82%)

Figure 6.3: Measurements of hertz and con-
fidence in studio (source: tone generator)

The program log showed that a satisfac-
tory conditions were produced within 1-18
passes. At a sample-rate of 44.100 Hz, and
a pass being 2048 samples, this is 46-836
ms, which is satisfactory. The tuner began
to fail at around 800-1000 Hz and above —
again, well within the requirement. It did
not recognise any sine wave, which i did sus-
pect, since sine waves are low in power.

In summary, I find the results satisfac-
tory, since all requirements are met. More
over, I did not expect such high confidence
readings for the plugged guitar strings at an
average of 93,2% — these far exceeded my
expectations.

Figure 6.4: Measurements of hertz and con-
fidence in studio (source: pre-tuned guitar)

Figure 6.5: Physical set-up; Shure SM7-B mi-
crophone in vocalbooth

34 CHAPTER 6. TESTING

6.2.3 Noise

In these tests, I will try to break the system. The experiment will be done with the filters
on and off, and repeated in two different environments that may impact the clarity of the
received signal. I place the tuner along with a controlled noise source and turn up the
noise level until the system no longer produces a reliable reading. The noise source is not
musical in nature, but one that is rich in all frequencies; I used a recording of a rain and
thunder storm. The goal of this test is to show that the filters make a viable difference, and
each frequency is therefore tested with and without the filters on. Particularly, I expect the
low-pass filter to improve the measurements at high noise levels.

Before the test I took a measurement of the dB SPL (sound pressure level) in the room
with no articifial noise. The test will record the average confidence readings of 6 measure-
ments from the frequencies in standard tuning. The noise level is then increased until the
confidence falls below 50% or if impossible to take a reading because of fluctuations.

Noise (dB SPL) || w/ Filter | w/o Filter Noise (dB SPL) || w/ Filter | w/o Filter
35 87,1% 79,7% 35 82,2% 82,6%
40 85,7% 70,5% 40 87,2% 69,7%
50 84,3% 67,5% 50 66,2% 64,8%
55 79,6% 62,5% 56 69,7% 53,0%
60 60,5% 44,3% 60 55,2% 42,0%
62 49,8% N/A 62 51,9% N/A

Figure 6.6: Confidence measurements in Figure 6.7: Confidence measurements in a
neutral environment (living room) hard-surface environment (bathroom)

In both instances, the tuner fails to produce the required result at around 60dB SPL,
without the filters on. With the filter on, the tuner clearly produces a higher confidence.
While this is satisfactory for the test, since it shows an improvement by employing the
filters, personally I am not satisfied with the results. Had no other test been carried out
at this point, I would have tampered with the filter and weighting parameters until I was
satisfied with the results.

6.2.4 Chord

In this test, although not required by the tuner, I will play simple triad chords and record
how the tuner responds to such an input. While I can make no arguable prediction as to the
result, as the tuner was not designed to recognise chords, I suspect that either the root tone
will dominate the signal, or jump between the constituent tones that make up the chord.

Chord/Root | 3rd. | 5th. | Result The experiment was repeated across dif-
Abm B | Eb Ab ferent octaves, and the results stayed the
B Eb Ff B same. Although, the results tended toward
Ch F | Ab CH the lowest octave in the range of the tuner of
E Gi B E the tone, which makes sense, in retrospect,
Eb» G Bb Eb since harmonious tones (or chords) are peri-
F By | Cf Ff odic by definition.
While not a requirement or even de-
Figure 6.8: Chord input measurements signed to do so, the tuner does in fact seem

to recognise the root of a chord.

Conclusion

From the theoretical foundations of Fourier Analysis, developed by Jean-Baptiste Joseph
Fourier (1768-1830), the thesis has presented a multitude of techniques in applying the
theory in practice under the constraints of real-time processing.

We have seen that ideal filters are theoretical mathematical constructs that can never be
realised in practice. We can, however, get very good approximations using the cascaded
filtering method. The equivalent filter order thereof must, however, stay small enough in
order to remain faster than the Fast Fourier Transform.

I remark that while the Fast Fourier Transform is a highly tuned and efficient algorithm,
in a real-time context, despite efforts to adapt it thereto, it is highly contested by infinite
impulse response convolution. Similarly, finite impulse response convolution is only ap-
plicable if we desire a linear phase, or if the intent is not mere frequency manipulation.
In conclusion I find that Fast Fourier transform methods —Short-Time Fourier Transform
and Sliding Discrete Fourier Transform— are valuable tools for real-time spectral analysis.
However, when we want to manipulate the spectral content of real-time signals, in most
cases we would choose a time-domain based filter. As shown, however, there are trade-offs
for each method — ie. delay, latency, efficiency, quality, etc. Therefore choosing a technique
should reflect and conform to the requirements of the problem at hand.

In testing the tuner I found room for many improvements. An algorithm that solves this
problem can be implemented in many ways, and my effort to design such an algorithm was
based on simple assumptions about the incoming signal and used the theory of convolution
and correlation, presented in theory of the thesis. The main objective of it was to provide a
viable example, showing that the filters do remove noise and have a positive influence on
the system’s ability to recognise the principal frequency. I find this to be the case.

35

36

CHAPTER 7. CONCLUSION

Definitions

A.1 Linear Time Invariant (LTI) systems

In order for a system to be linear it must exhibit the additive and homogeneous properties,
as defined below.

Lemma A.1.1 (Additivity) Lemma A.1.2 (Homogeity)
Let zi[n] — yx[n] be a system. If Let z[n] — y[n] be a system and let o be any
constant. If
xl[n] + IL‘Q[TL] — N [TL] + yQ[n] (Al) Oé(L'[TL] N ay[n] (AZ)

then the system exhibits the additive property. the system exhibits the homogeneous property.

Linearity then follows from systems that exhibit both of the aforementioned properties.

Theorem A.1.1 (Linearity) Ifa system H(x) exhibits both the additivity and homogeneous prop-
erty, such that

azi[n] + pra[n] = ayi[n] + Bya[n] (A.3)
then the system is linear.

Theorem A.1.2 (Time invariance) Let H(x) be a system, such that yin]| = H(x[n]) and let ty be
a constant. If

I[t — to] — y[t — to] (A4)

then the system is time invariant.

37

38 APPENDIX A. DEFINITIONS

A.2 Special functions

A.2.1 Dirac delta function

Definition A.2.1 (Dirac Delta Function) The § function is a special function, which has the fol-
lowing properties

— o.9]
sy =1 =0 /<mm=1 (A5)
0 t#0 —
in continuous time. And its discrete equivalent is given by
=1 "=V iiﬂ] 1 (A6)
pr n| = .
0 n#0 P

A.2.2 Step function

Definition A.2.2 (Step Function) The step function is a special function, which has the following
properties

> >
mo:? £20 UM:{ln_O (A7)
0 t<0 0 n<0

A.2.3 sinc function
Definition A.2.3 (sinc function)

sinz

sincx = (A.8)

incx

Time (n)

N\

Figure A.1: Sinc function

Bibliography

[1] J. G. Proakis & D. G. Manolakis, Digital Signal Processing, Pearson Education, 4th. Edi-
tion, 2007

[2] J. H. McClellan, R. W. Schafer & M. A. Yoder, Signal Processing First,
[3] Steve Winder, Analog and Digital Filter Design, 2nd Edition, Newnes Press, 1997

[4] R.Bradford, R. Dobson & J. Ffitch, Sliding is Smoother than Jumping, Department of Com-
puter Science, University of Bath England

[5] Robert Bristow-Johnson, Cookbook formulae for audio EQ biquad filter coefficients,
http:/ /www.musicdsp.org/files/ Audio-EQ-Cookbook.txt

[6] C.Berg & J. P. Solovej, Noter til Analyse 1: Fourierraekker og Metriske rum, Department of
Mathematics, University of Copenhagen, 1st. Edition, 2011

39

